- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bhabha, Gira (2)
-
Abriata, Luciano_A (1)
-
Alexander, Leila_T (1)
-
Bayo, Yusupha (1)
-
Breyton, Cécile (1)
-
Caulton, Simon_G (1)
-
Chen, James (1)
-
Coudray, Nicolas (1)
-
Davies, Owen_R (1)
-
Degroux, Séraphine (1)
-
Durairaj, Janani (1)
-
Ekiert, Damian_C (1)
-
Erlandsen, Benedikte_S (1)
-
Fidelis, Krzysztof (1)
-
Freddolino, Lydia (1)
-
Gilzer, Dominic (1)
-
Greening, Chris (1)
-
Grimes, Jonathan_M (1)
-
Grinter, Rhys (1)
-
Gurusaran, Manickam (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Determining how microtubules (MTs) are nucleated is essential for understanding how the cytoskeleton assembles. While the MT nucleator, γ-tubulin ring complex (γ-TuRC) has been identified, precisely how γ-TuRC nucleates a MT remains poorly understood. Here, we developed a single molecule assay to directly visualize nucleation of a MT from purified Xenopus laevis γ-TuRC. We reveal a high γ-/αβ-tubulin affinity, which facilitates assembly of a MT from γ-TuRC. Whereas spontaneous nucleation requires assembly of 8 αβ-tubulins, nucleation from γ-TuRC occurs efficiently with a cooperativity of 4 αβ-tubulin dimers. This is distinct from pre-assembled MT seeds, where a single dimer is sufficient to initiate growth. A computational model predicts our kinetic measurements and reveals the rate-limiting transition where laterally associated αβ-tubulins drive γ-TuRC into a closed conformation. NME7, TPX2, and the putative activation domain of CDK5RAP2 h γ-TuRC-mediated nucleation, while XMAP215 drastically increases the nucleation efficiency by strengthening the longitudinal γ-/αβ-tubulin interaction.more » « less
-
Alexander, Leila_T; Durairaj, Janani; Kryshtafovych, Andriy; Abriata, Luciano_A; Bayo, Yusupha; Bhabha, Gira; Breyton, Cécile; Caulton, Simon_G; Chen, James; Degroux, Séraphine; et al (, Proteins: Structure, Function, and Bioinformatics)Abstract We present an in‐depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three‐dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.more » « less
An official website of the United States government
